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A	
  primer	
  for	
  the	
  statistical	
  analysis	
  of	
  field	
  test	
  data	
  
obtained	
  from	
  screening	
  instruments	
  that	
  detect	
  

contraband	
  

1.	
   Introduction	
  
A variety of federal agencies have continuing development programs whose mission is to 
advance the technology for monitoring the flow of commerce to detect the presence of 
contraband.  The items of interest can be undeclared goods on which taxes or tariffs are 
due, or illegal substances such as recreational drugs, or banned weapons or weapon parts 
such as nuclear material, or nuclear weapons being moved in violation of a non-
proliferation treaty.  As these technologies continue in development they are assessed 
periodically in experimental testing either in the laboratory or in the field.  The testing 
programs sometimes may resemble those employed by the pharmaceutical industry and 
their goal is to determine whether these technologies are efficacious and whether there 
are unanticipated negative consequences.  The basic questions are: 
 

• Are they effective in detecting contraband? 
• What are the negative consequences?  What are the error rates? 

 
Generally the first question is addressed by determination of the detection probability, PD.  
The second is addressed by the false alarm probability, PfA.  These are the performance 
measures used to evaluate progress and to compare the performance of one technology or 
instrument against another.  They also inform decisions regarding procurement of 
systems and their deployment to specific venues.  The effectiveness of these instruments 
depends on the technology deployed, its calibration and stability, the CONOPS (conduct 
of operations) determining their usage, the nature of the contraband being detected, and 
the nature of the cargo overburden that may interfere with detection.   
 
Testing results can be sorted into five categories, one of them ambiguous as follows: 
 

1. Detection:   Correct declaration that contraband is present when, 
in fact, there is contraband.  The detection probability is PD. 

2. Clear:    Correct declaration that contraband is not 
present when, in fact, there is no contraband.  The clearing probability is PC. 

3. False alarm:    Incorrect declaration that there is contraband 
present when, in fact, there is none.  The false alarm probability is PfA. 

4. Failure to detect:   Declaration that there is no contraband present 
when, in fact, there is contraband.  The false negative probability is PFN. 

5. No definite indication:  Some screenings will generate ambiguous results 
and fail to generate a definite indication of whether there is contraband present.  
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For the analysis below these cases will be separated from the main data set and 
not addressed in the analysis.   

 
When screening systems are deployed to detect contraband their performance is 
characterized by PD, PC, PfA, and PFN where 
 
 

€ 

PFN = 1− PD[ ]        (1.1-1) 
 
and 
 
 

€ 

PC = 1− PfA[ ]         (1.1-2) 
 
Unfortunately, the effectiveness of these systems in operation can be predicted only 
approximately since experimental testing produces only a somewhat ambiguous estimate 
of the true values for PD and PfA.  Their true values can be determined only in an infinite 
number of measurements.  In practice an experimental campaign only approximates the 
infinite set and the result is an estimated value whose uncertainty is determined by the 
number of successes and sample size and the degree to which the experimental conditions 
accurately portray the real world implementation whose variations occur in materials, 
geometry, interferences, and deviations from prescribed procedures.  This primer will 
deal only with the uncertainties due to stochastic variations in an otherwise perfect 
experimental simulation.  The goal of the analysis is to determine the most probable 
value of P and estimate its uncertainty or the confidence that it falls within an acceptable 
range. 
 
A subsidiary goal is to develop a good experimental plan that provides sufficiently robust 
statistical confidence so that, when the data analysis is completed, the performance 
uncertainties are acceptable and/or that the performance falls within the acceptable range 
at an acceptable confidence.  It is important to estimate the minimum sample size that is 
likely to be required for robust uncertainty estimates so that the ultimate analysis 
produces compelling conclusions.  The experimental results cannot be predicted in detail 
and so the minimum sample size cannot be predicted exactly.  However, it is possible to 
determine the minimum size of a sample that contains no errors, or a sample with only 
one error, or only two, and so on.   Those sample sizes are determined so that they 
provide the stated confidence level required in the analysis.  So the goal is to define the 
number of errors at which testing will be stopped and to define the needed confidence, 
and then determine the sample size needed for that plan to be successful.   
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2	
   Two	
  approaches	
  to	
  presentation	
  of	
  performance	
  results	
  
There are at least two approaches for presentation of the results of an experimental 
measurement of performance: 
 

• A point estimate in which the most probable value of P is determined along with 
its uncertainty determined by the measured standard deviation, σP. 

 
• A one-sided confidence interval or “threshold estimate” which establishes only 

the probability that the true value of P falls within an acceptable range.  In the 
case of detection it establishes the probability that PD is in the acceptable range, 
i.e. PD(th) ≤ PD ≤ 1.  Or, in the case of false alarms, the probability that the true 
value of PfA falls below a maximum allowed value, i.e. 0 ≤ PfA ≤ PfA(th). 

 
The point estimate (developed in Section 5) is usually much more precise but, because of 
that, requires much more robust statistics and is more challenging experimentally.  It 
usually requires large sample sizes to provide the desired result.  On the other hand the 
one-sided confidence interval or “threshold” method (developed in Section 3) is 
somewhat ambiguous and forgiving, allowing the use of smaller data sets where only a 
few interesting events are observed.  The latter is in common usage.  For example the 
System Requirement for the Advanced Spectroscopic Portal (ASP) calls for detection 
performance of PD ≥ 0.8 at 95% confidence1, meaning that there must be 95% probability 
that the true value of PD falls within the allowed range 0.8 ≤ PD ≤ 1.0.  Similarly, the ASP 
specification sets an upper bound on false alarms on the neutron channel to PfA ≤ 0.001, 
though no confidence is stated2. 
 
The following sections address both of these presentation formats for experimental data.  
And, more importantly, they establish the minimum sample sizes needed to confirm a 
given expectation of performance or requirement.  The principal question is how many 
independent trials are likely to be required to establish that the true value of P falls within 
an allowed range at the stated confidence (probability that the true value is within that 
range) or to establish the most probable value of P with a satisfactorily small uncertainty. 
 
There is ambiguity in forecasting the minimum sample size since the actual occurrence of 
errors (false alarms, fA, or failures to detect, FN) is not known beforehand.  So the 
sample size estimates are based on hypothetical forecasts of the occurrence of errors in 
the data set.  Sometimes the experimental protocol stipulates that testing is stopped when 
a predetermined number of errors have occurred.  For that case the analysis presented 

                                                
1  Mike Kennedy, et. al., “Performance Specification for Advanced Spectroscopic 
Portal (ASP) Variant C (cargo)”, US Department of Homeland Security Domestic 
Nuclear Detection Office (DNDO), 600-ASP-000013v4.10, July 19, 2007, requirement 
ASP-2862, page 6. 
2  Ibid, requirement ASP-1167, page 45. 
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below facilitates prediction of the number of test samples required based on the expected 
system performance. 
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3	
   The	
  threshold	
  estimate	
  

3.1	
   The	
  detection	
  problem	
  	
  
The true detection probability for a system in its normal operating regime is PD.  That can 
be measured exactly in a test with an infinite number of trials and is the ratio of successes 
to the total number of trials.  But, actual field tests encompass only a finite set of trials 
and so the data provides only an estimate of PD.  How precise that estimate is depends on 
how closely the sample size approaches the infinite set of measurements.  In real 
measurements that data, i.e. the number of trials and the number of successful outcomes, 
provides a most probable value of PD and a distribution function that describes the range 
of possible values and their relative likelihood.  The methodology for this estimate may 
be found in many textbooks on statistical analysis.  The best source is Wikipedia3 and 
there are several traditional textbooks such as Box4, Hoel5, Mathews & Walker6, or 
Feller7. 
 
For a random and independent set of N measurements that generate K correct detections 
the distribution function describing PD is the binomial distribution as follows*: 
 

 

€ 

f (PD,N,K) =
N!

K! N −K( )!
PD

K 1− PD( )N −K     (3.1-1) 

 
The distribution of P is determined entirely by N and K.  It’s most probable value is 
always <PD> = K/N. The binomial distribution is shown in the figure below for several 
sample sizes, N, with nominally the same ratio <PD> = 0.8. 
 
It is especially important to remember that this distribution describes the possible values 
of the true PD given a data set whose trials were genuinely random.  There must be no 
correlations among the samples.  Their sequence must be random to detect possible 
systematic errors and correlations among results due to common parameters such as 
utilizing the same test object repetitively in one cargo overburden or with the same 
interfering shielding or radioactive materials might introduce correlations that would 
violate the requirement for randomized trials.  Certainly the data set must represent the 
                                                
3  http://en.wikipedia.org/wiki/Binomial_distribution 
4  Box, Hunter and Hunter, Statistics for Experimenters, Wiley (1978), page 130. 
5  Paul G. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons (1971), 
page 59. 
6  Jon Mathews & R. L. Walker, Mathematical Methods of Physics, W. A. Benjamin 
(1964), page 354. 
7  William Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 
John Wiley & Sons (1968), pp 148 & 172. 
* This is the standard form of the binomial distribution but is not normalized, i.e. its 
integral is 1/(N+1) so that in practical usage the numerator N! must be replaced by 
(N+1)! for proper normalization. 
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full diversity of the real world distribution of contraband items and their configuration in 
a shipment. 

 
 

Figure 3.1-1 Binomial distributions of various sample sizes with K/N=0.8. 
 
How narrow or broad this distribution is suggests the uncertainties in our estimate of PD 
and depends strongly on the sample size N.  Clearly the breadth of the distribution and 
the magnitude of the uncertainties are greatest at small N such as N=5 and the 
distribution is seen to be asymmetrical about the most probable value for small N.  When 
N becomes large, i.e. N ≥ 50 or so the binomial distribution begins to resemble the 
Gaussian and that will later become the basis for a simple approximation. 
 
Fortunately Eq. (3.1-1) can be easily evaluated in an Excel spreadsheet using the 
BINOMIAL function.  Specifically*: 
 
 f(PD,N,K)= (N+1)*BINOMDIST(K,N,PD,FALSE)  (3.1-2) 
 
Evaluation of technology performance usually begins with estimation of the most 
probable value of PD.  That allows comparison of different technologies in the testing 
performance and a measure of their efficacy.  However, all data sets are not the same.  
Some are a good deal more robust than others.  It is important to assess the robustness of 
the estimated PD by analysis of the uncertainty in PD.  That uncertainty can be expressed 
as a standard deviation, as described in Section 5, but this is somewhat misleading when 
the distribution is highly asymmetrical as is the case in very small sample sizes.  
Alternatively, it is often more useful to establish a confidence interval within which the 
true vale of PD is likely to occur with high probability.  The uncertainty is obtained from 

                                                
* The factor (N+1) is required for normalization of the distribution function. 
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the one-sided confidence interval or “threshold” approach where, rather than determining 
the most probable PD alone, the method determines the probability that PD exceeds a 
threshold value.  What is the probability that the true value of PD exceeds a minimum 
required value, i.e. is to the right of the vertical bar in Fig. 3.1-1?  This probability is 
called the “confidence”, i.e. the probability that the true PD falls within the acceptable 
range, PD(th) ≤ PD ≤ 1.0.  The confidence integral is given below. 
 

 

€ 

C(PD,N,K) = f (P,N,K)dP
PD (th )

1

∫      (3.1-3) 

 
In the example above the most probable value was <PD>=0.8 and a threshold value was 
set to PD(th)=0.7.  For that threshold value the confidence integral, Eq. 3.1-3, takes on the 
following values. 
 

N K Errors,  
m=N-K 

Confidence, 
C (%) 

5 4 1 57 
10 8 2 67 
20 16 4 79 
40 32 8 89 
60 48 12 94 
80 64 16 97 
100 80 20 98 

 
As the figure illustrates and as the table shows the confidence for the interval increases 
dramatically with sample size as the distribution grows narrower.  The distribution 
becomes more compact about its most probable value and becomes more symmetrical.  
At N=5 there’s a 43% probability that PD falls outside the acceptable range while at 
N=100 there’s only 2% probability that PD is outside the acceptable range. 
 
Fortunately, the confidence integral is available in an Excel spreadsheet using the same 
BINOMIAL function.  The last argument is switched to accomplish this as follows*: 
 
 C(PD(th),N,K) = BINOMDIST(K,N+1,PD(th),TRUE)  (3.1-4) 
 
The confidence, i.e. the probability that the true PD falls within the defined interval, 
depends strongly on the threshold value as shown in the figure below 

                                                
* Just as before the argument N must be replaced by N+1 to provide proper 
normalization. 
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Figure 3.1-2 Confidence integral for K/N=0.8. 
 
It is clear that estimation of the minimum sample size, Nmin, depends on the expected 
performance, <PD> = K/N (how many errors are likely to occur in a sample set), and the 
desired confidence at the threshold value PD(th).  There is no analytic solution above and, 
instead, it is necessary to solve Eq. (3.1-3) above iteratively to determine N given C.  
That is, the threshold PD(th) and the confidence C are set to predetermined values, then N 
and K are varied to satisfy the integral equation.  An example is shown below where the 
minimum samples sizes have been estimated for several values of PD and at two 
confidence levels. 
 

 
 

 Figure 3.1-3 Minimum sample size vs. the number of errors encountered.  Two 
cases:  confidence = 68% and confidence = 95%. 
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The figure above shows that the demand for increased sample size grows dramatically 
with increases in the needed confidence.  Of course additional errors generate a need for 
larger samples to confirm a given detection probability at the same confidence. 
 
In general there’s no quantitative knowledge of PD until a few errors have been 
encountered in the measured data set.  It’s not possible to predict when the errors will 
occur or how many trials will occur before the first error is encountered, or the second, or 
the third, and so on.  Instead, the problem is posed in terms of the minimum sample size 
required if no errors are encountered, the minimum size if only one is encountered, or if 
only two or only three or only four errors are encountered.  So, the minimum requirement 
shown in Fig 3.1-3 is used by selecting a “few” errors, hypothetically establishing a given 
value of m, where 1 ≤ m ≤ 4, and determining the needed sample size from the figure for 
that hypothetical result.  Then if the data set contains a few errors and the minimum 
sample size has been reached in the data for that number of errors, then the resulting N 
and K will be sufficient to confirm that the performance is within the acceptable range at 
the defined confidence, or that the uncertainties are adequately small. 

3.2	
   Clearing	
  probability	
  
The “clearing probability”, PC, is completely analogous to detection where a cargo with 
no contraband present is correctly cleared.  This is a positive outcome.  It occurs with 
high probability and is analyzed in the same way as detection by replacing PD with PC in 
Eq. (3.1-3).  Thus, the clearing probability is given below. 
 

€ 

f (PC ,N,K) =
N!

K! N −K( )!
PC

K 1− PC( )N −K
    (3.2-1) 

 
and its confidence integral is given by: 
 

 

€ 

C(PC ,N,K) = f (P,N,K)dP
PC (th )

1

∫
     (3.2-2) 

 
In practice the usual approach is to work the inverse problem, i.e. the false alarm 
probability.  False alarms are the complement to correct clearing.

 
 

 

€ 

PC = 1− PfA( )         (3.2-3) 
 
The relationship noted above is utilized in the analysis of false positives or false alarms 
below.
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3.3	
   False	
  alarm	
  analysis	
  	
  
Analysis of false alarm probability, PfA, is identical to the approach above for detection 
probability, PD.  In this case an upper bound, PfA(th), is set to a predetermined value 
(shown by the bar in Fig 3.3–1, that sets a limiting value on PfA and the range of interest 
is over the small values of PfA ranging 0 ≤ PfA ≤ PfA(th).   

 
 

 Figure 3.3-1 Binomial distribution for PfA=0.05.  Curves are for K/N=1/20 and 
K/N=5/100.  The former corresponds to 64% confidence that PfA ≤ 0.1 and the second to 
95% confidence that PfA ≤ 0.1. 
 
The binomial distribution peaks (most probable value) at 0.05 for 1 error in 20 trials and 
the distribution of likely PfA values extends above the threshold value PfA(th)=0.1 with 
low probabilities.  Here the confidence integral is re-cast into the following form: 
 

€ 

C(PfA (th),N,K) = f (P,N,K)dP
0

PfA ( th )

∫      (3.3-1) 

 
In the figure example two data sets are considered both of which have a most probable 
PfA=0.05.  However, one set contains only 20 trials and the other 100 trials so that the 
larger data set has a much narrower distribution and more of it falls in the acceptable 
range PfA(th) ≤ 0.1.  Clearly the larger sample size leads to higher levels of confidence 
that the true value of P is within the acceptable range.  For the N=20 set the confidence is 
only 64%, i.e. there is a 36% probability that P is not within the acceptable range below 
PfA(th) ≤ 0.1.  But, for the N=100 set the distribution is much narrower so that the 
confidence is 95% indicating only a 5% probability that the true PfA is outside the 
acceptable range. 
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The confidence integral for this case is shown below. 
 

 
 Figure 3.3-2 Confidence integral for N=20 trials with K=1 false alarm. 
 
In general the expression is evaluated in a manner analogous to the detection problem and 
the result for the inverse is derived from Eq. (3.3-1) above: 
 

 

€ 

C(PfA (th),N,K) =1− f (P,N,K)dP
PfA ( th )

1

∫     (3.3-2) 

 
and the spreadsheet version is given below*: 
 

C(PfA(th),N,K) = [1 - BINOMDIST(K,N+1,PfA(th),TRUE)] (3.3-3) 
 
This equation is solved iteratively to determine the minimum sample size exactly as in 
the detection problem. An example of the results is shown in the figure below. 

                                                
* As before replacing N with N+1 provides needed normalization. 
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Figure 3.3-3 Estimated sample size vs. number of false alarms for two levels of 
confidence and PfA thresholds 0.002 to 0.050. 
 
Here too it is seen clearly that the number of trials required increases with the desired 
confidence and with the number of observed alarms.    A quantitative knowledge of PfA is 
obtained only after a few errors have been encountered in the data set.  The figure above 
is used by choosing a “few” errors, i.e. 1 ≤ m ≤ 4 and determining the minimum sample 
size from the figure based on the number of errors that could be in the data set when 
testing is stopped. 
 
The procedure is exact but can be time consuming.  An alternative that offers an analytic 
solution that is simple to calculate is desirable and an approximation provides this 
convenience is described below. 

3.4	
   Failure	
  to	
  detect	
  
Failure to detect is completely analogous to the false alarm.  It is an error condition, i.e. a 
negative outcome that occurs with low probability.  The failure to detect is described by 
replacing PfA with PFN, the probability of a failure to detect or “false negative”. 
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4	
   The	
  analytic	
  (Gaussian)	
  approximation	
  

4.1	
   Rough	
  estimation	
  of	
  the	
  needed	
  sample	
  size	
  
The methodology described above is correct in its description of the statistics but it is 
cumbersome to evaluate.  An analytical formula would be more convenient.  When 
sample sizes are large the Gaussian distribution is a reasonable approximation to the 
binomial and it facilitates an analytical formula.  The Gaussian description of the 
detection probability is given by: 
 

 

€ 

f (K,µ,σ) =
1

σ 2π
e
−
1
2
K−µ
σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

      (4.1-1) 

 
where for sample size N the distribution function has: 
 
 Mean: µ = PN        (4.1-2) 
 
 Standard deviation: 

€ 

σ = µ = PN      (4.1-3) 
 
The Gaussian shape is very familiar where its smooth tails extend to infinity in both 
directions and the distribution is symmetric about the mean.  The most probable value 
occurs at the mean.  Comparison with Figures 3.1-1 and 3.3-1 show stark contrast 
between the symmetrical Gaussian shape and the highly asymmetrical shape of the 
Binomial distribution.  However, these differences are reduced with increasing sample 
size as can be seen in Figure 3.1-1 for N = 100.  For a more detailed discussion of the 
Gaussian approximation and its errors, and its range of applicability see Wikipedia8. 
 

4.2	
   Detection	
  	
  
The simplest formulation of the Gaussian approximation is to analyze the probability of a 
false negative result.  That is the inverse of the detection probability, i.e. 
 
 

€ 

PFN = 1− PD[ ]        (4.2-1) 
 
The false negative probability is then given, in this approximation, by: 
 

 

€ 

PFN (K,µ,σ) =
1

σ 2π
e
−
1
2
K−µ
σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

     (4.2-2) 

 
where K is the number of false negatives, µ is the mean number of false negatives and σ 
is the standard deviation of the distribution of false negatives. 
                                                
8  http://en.wikipedia.org/wiki/Binomial_distribution 
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€ 

µ = PFNN         (4.2-3) 
 
 

€ 

σ = µ = PFNN        (4.2-4) 
 
The probability that the number of false negatives is less than the threshold PFN(th) 
 

 

€ 

C K,µ,σ( ) = PFN (K,µFN ,σFN )dK
−∞

PFN (th )

∫ =
1
2

+ PFN (K,µFN ,σFN )dK
0

PFN ( th )

∫  (4.2-5) 

 
The confidence integral is evaluated by defining a new variable t as follows: 
 

 

€ 

t =
K −µFN( )
σFN 2

        (4.2-6) 

 
and 
 

 

€ 

tth =
Kth −µFN( )
σFN 2

       (4.2-7) 

 
The confidence is established by integration over the Gaussian probability distribution.  
Then taking the definition of the Error Function9, i.e. 
 

 

€ 

erf (x) =
2
π

e−t
2

0

x

∫ dt        (4.2-8) 

 
The result is: 
 

€ 

C(Kth ,µFN ,σFN ) =
1
2
1+ erf (tth )[ ]     (4.2-9) 

 
The error function is tabulated in standard texts such as AMS-5510.  For convenience a 
new parameter Z is defined: 
 

€ 

Zth = tth 2 =
Kth −µFN

σFN

      (4.2-10) 

 
Then several values for C in Eq. (4.2-9) are chosen and Zth is determined that satisfies the 
equation.  The results are shown in the table below. 
                                                
9  P. M. Morse, et. al.,”Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables”, National Bureau of Standards, Applied Mathematics 
Series #55, (1964), page 297. 
10   Ibid, page 310. 
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 Table 4.2-1 Zth for several levels of confidence 

 
In a given measurement data set there will be “m” false negative errors and, in the 
Gaussian approximation, that constitutes both the mean and most probable value of the 
distribution function, i.e. 
 
 

€ 

µ = m         (4.2-11) 
 
In addition, the Gaussian approximation assumes the standard deviation: 
 

€ 

σ = µ = m         (4.2-12) 
 
Combining these results from Eqs. 4.2-10, 4.2-11, and 4.2-12 and noting that 
Kth=PFN(th)xN   Eq. 4.2-10 is solved for N. 
 

 

€ 

N =
m + mZth

PFN (th)
       (4.2-13) 

 
But PFN is the complement of PD (from Eq. 4.2-1) so this result is written in the more 
appropriate form below. 

 
 
      
      (4.2-
14) 
 
 

 
This is the desired result when analyzing detection data, i.e. when real contraband is 
present.  For that analysis the result gives the estimated minimum sample size in the 
Gaussian approximation.  It may be compared to the exact result from the binomial 
distribution and that is shown below. 
 
Utilization of this result relies on the following understandings: 

• PD(th) is the lower bound of the desired confidence interval.  It’s the lowest 
acceptable value for PD. 
 

Confidence, C (%) erf (tth) tth Zth
 

68 0.36 0.33 0.47 
80 0.60 0.60 0.85 
90 0.80 0.91 1.29 
95 0.90 1.16 1.64 
98 0.96 1.45 2.05 
99 0.98 1.645 2.33 

€ 

ND =
m + Zth m( )
1− PD (th)( )  
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• m is the number of errors at which testing is stopped.  Usually a few errors would 
be required to establish confidence in the knowledge of PD.  However, the 
confidence interval is a relatively broad range so that a large number of errors, m, 
is not required.  Usual judgments would place appropriate values for m in the 
range 1 ≤ m ≤ 4. 

 
• ND is the minimum sample size that is expected to be required in order to confirm 

that the true value of PD is within the desired range at the stated confidence 
(reflected in Zth). 

 
The approximate analytical result above is compared to the exact result in the figure 
below. 
 

 
 

 Figure 4.2-1 Comparison of Gaussian formula estimate of sample size to exact 
value from binomial distribution.  Solid lines are the binomial determination of minimum 
sample size while the dashed curves show the Gaussian estimate. 
 
Examination of the figure shows that the simple result derived for the Gaussian 
approximation at 68% confidence provides sample size estimates quite close to the 
correct values obtained from the binomial.  The accuracy of the prediction improves with 
increasing m.  This result appears to be applicable over a substantial range of detection 
thresholds at 68% confidence that spans nearly two decades in sample size.  The 
estimates are better when the threshold value is high as compared to the cases with low 
threshold values.  Generally the analytical estimate in Eq. 4.2-14 underestimates the exact 
result from the binomial by only 12-35 % in the regime focused on 68% confidence.  The 
greatest errors are, as expected, at the extreme where there is only 1-2 false negatives.  
This is considered a good estimate in light of the very poor representation of the 
distribution function by the Gaussian at small error rates. 
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A similar comparison can be made for the Gaussian estimates at 95% confidence.  That 
result is shown below. 

 
 

 Figure 4.2-2 Comparison of Gaussian approximation estimate of sample size to 
binomial at 95% confidence.  Solid curves are the sample size determined from the 
binomial while the dashed lines show the Gaussian estimate. 

 
Examination of the figure shows the Gaussian estimate to be fairly precise over the range 
investigated when the confidence is 95%.  Accuracy improves at larger m.  The Gaussian 
approximation generates sample size estimates that are slightly low, possibly as much as 
20-40 % low.  This is considered a reasonably good approximation as the scale of the 
underestimate remains small over two decades in sample sizes. 
 

4.3	
   False	
  alarms	
  
The Gaussian approximation in the case of false alarm is analogous to the approach for 
detection.  With the focus on the error condition, i.e. the occurrence of false alarms.  The 
confidence integral is obtained from Eq. (4.2-9) where the parameter t is defined with a 
mean equal to the number of false alarms occurring in a given data set and the standard 
deviation is the square root of the mean.  The threshold in this case is: 
 

€ 

Kth = PfA (th)N        (4.3-1) 
 

Then from Eq. (4.2-10) 
 

€ 

Zth =
PfAN −m( )

m
       (4.3-2) 
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From which the desired result is: 
 
 

(4.3-3) 
 
 

 
This provides the desired result when analyzing false alarm data, i.e. data obtained 
when no contraband is present.  The result is compared in the two figures below with the 
exact result obtained from the binomial distribution. 
 
This result is utilized with the following understandings: 
 

• PfA(th) is the threshold value establishing the confidence interval.  It is the largest 
acceptable value of PfA. 
 

• PfA has a high probability of falling within the acceptable range.  That probability 
or confidence is reflected by Zth. 

 
• m is a judgment choice reflecting the number of errors likely to be encountered in 

the data set before the trials are stopped.  Good judgment usually requires a few 
errors before the estimates are considered good so 1 ≤ m ≤ 4. 

 
• Then NfA is the minimum sample size that is expected to be required to confirm 

that PfA falls within the acceptable range at the confidence embedded in Zth. 
 

• If these ground rules are adhered to then the completed data set with NfA samples 
would subsequently be analyzed using the binomial distribution (3.1-3) and the 
sample size is expected to be sufficient to confirm PfA ≤ PfA(th) at the defined 
confidence. 

 
The analytical result is compared to the binomial in the figures below.  The extent to 
which the Gaussian approximation is adequate can be seen comparing the solid and 
dashed curves in the figures. 

€ 

N fA =
m + Zth m
PfA (th)  
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 Figure 4.3-1 Comparison of sample sizes for false alarm analysis at 68% 
confidence.  Solid curves are the exact result from the binomial and dashed lines are the 
estimates from the Gaussian approximation. 
 
Examination of the above results shows that the Gaussian approximation slightly 
underestimates the sample sizes though the estimates improve at lower false alarm 
thresholds and at larger m.  Generally, the Gaussian underestimates the sample size by 
~ 15-35% which is remarkably good considering the disparity between the Gaussian and 
binomial representations are the cases of primary interest. 
 
A similar comparison at 95% confidence is shown below. 
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Figure  4.3-2 Comparison of sample sizes for false alarm analysis at 95% 
confidence.  Solid curves are the exact result from the binomial and dashed lines are the 
estimates from the Gaussian approximation. 
 
Examination of the comparative data shows that, at 95% confidence, the Gaussian 
estimates are systematically a little less than the exact results.  However, the results 
appear to be the same over the whole range the Gaussian approximation underestimating 
the minimum sample size by ~ 20-40 % over more than two decades span in sample 
sizes.   
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5	
   Point	
  estimate	
  
In a “point estimate” presentation the goal is to determine the most probable value of P 
together with its uncertainty.  The latter is represented by the standard deviation of P.  
The most probable value of P is given, as before for the binomial distribution: 
 

 

€ 

P =
K
N

        (5.1-1) 

 
and the variance for the binomial distribution may be found in Wikipedia11 or in the other 
statistics references listed earlier: 
 

 

€ 

σ 2 = NP(1− P) = K 1− K
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (5.1-2) 

 
Here K is the number of errors in the data set being analyzed and is usually small 
compared to N, i.e. K << N, so the approximation used here will be: 
 
 

€ 

σ ≈ K         (5.1-3) 
 
and note the similarity to the Poisson and Gaussian distributions.  The point estimate is 
generally utilized only when N is large and the Gaussian is a good approximation in this 
regime. 
 
In this presentation the goal is to establish the minimum sample size that provides a 
standard deviation that is small compared to the most probable value.  The relative error 
will be defined by choice of a parameter alpha α below: 
 

 

€ 

α ≡
σ
K

         (5.1-4) 

 
This parameter, α, is set according to the quality or accuracy desired in the result.  It is 
the relative error in the estimation of P.  It is a choice made in the process of planning an 
experiment and serves a role somewhat similar to the confidence in the threshold 
approach.  Choosing α=10% provides a reasonably precise estimate of PD and reducing 
that to α=5% is even more precise, but at the expense of a much more challenging 
measurement scope.  Solving 5.1-4 for N for the detection application* (using 5.1-1 and 
2.1-1): 

(5.1-5) 

                                                
11  http://en.wikipedia.org/wiki/Binomial_distribution 
*  The sample size is determined for the case where α is the relative error in PFN, i.e. 
ratio of standard deviation to the interval [1-PD].  If it is desired to obtain a relative error 
for PD itself then [1-PD] in (5.1-4) should be replaced by PD. € 

ND =
1

1− PD[ ]α 2  
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And for the false alarm application: 
 

        
        (5.1-
6) 
 
 

 
Examples of minimum sample sizes for α=20%, 10%, and 5% are shown in the figures 
below. 

 
 

 Figure 5.1-1 Minimum sample size for point estimate vs. detection probability.  
Curves shown are for α= 20%, 10% and 5%. 
 
Examination of the figure shows that if a point estimate is desired with only ~ 10% 
uncertainty then the sample sizes are quite large.  For PD=0.8 and 0.9 with 10% error the 
sample sizes are in the range 500-1000 as compared to the threshold analysis in Fig 3.1-3 
where tens of samples were sufficient even at 95% confidence. 
 
A similar comparison can be made for the false alarm analysis and that is shown in the 
figure below. 
 

€ 

N fA =
1

PfAα
2  
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 Figure 5.1-2 Minimum sample size for point estimate of false alarm probability, 
PfA.  Curves shown are for α= 20%, 10% and 5%. 
 
Examination of the figure shows the sample size requirements for the point estimate are 
much larger than were required for the threshold estimates.  Comparison with Fig 3.3-3 
show that only hundreds of trials or sometimes a few thousand were required even for 
95% confidence when the threshold value was considered adequate.  For the point 
estimate over the range of PfA considered the sample size requirements are many tens of 
thousands. 

6	
   Conclusions	
  
Analysis here assumes that a data set is made up of independent random trials.  
Specifically: 
 

• The sequence of targets of interest is random 
• The sequence of interfering materials is random 
• The sequence of interfering radiation sources is random 
• The time intervals and composition are uncorrelated with any target objects to the 

extent possible. 
 

The point estimate provides a very precise estimate of system performance but requires 
very robust statistics, i.e. very large sample size.  On the other hand the “threshold” 
analysis is more ambiguous and establishes only that the performance falls somewhere 
within an acceptable range with a known probability (confidence).  This approach is 
much less demanding in the statistics required and useful performance measures may be 
obtained with much smaller sample size.  In many applications the results provide 
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adequate precision and are capable of determining the probability that a given system 
meets a performance requirement without determining the performance, P, explicitly. 
 
Overall, that the Gaussian approximation provides reasonably accurate estimates of 
minimum sample size over a range of detection thresholds and limiting false alarm 
thresholds.  Two variations have been presented for application to analysis of detection 
data (when contraband is present) and to false alarm data (when contraband is not 
present).  These estimates have been compared to the exact binomial formulation over a 
range of detection thresholds from 0.8 to 0.98 and over a range of false alarm thresholds 
from 0.05 to 0.002.  The Gaussian formulation presented above typically underestimates 
the minimum sample size by ~ 15-40% but no more than that over the range studied.  
That conclusion is supported at confidence levels 68% and 95%. 
 

 
 

 
 
 


